Prolonged inhibition of muscle carnitine palmitoyltransferase-1 promotes intramyocellular lipid accumulation and insulin resistance in rats.
نویسندگان
چکیده
Cross-sectional studies in human subjects have used 1H magnetic resonance spectroscopy (HMRS) to demonstrate that insulin resistance correlates more tightly with the intramyocellular lipid (IMCL) concentration than with any other identified risk factor. To further explore the interaction between these two elements in the rat, we used two strategies to promote the storage of lipids in skeletal muscle and then evaluated subsequent changes in insulin-mediated glucose disposal. Normal rats received either a low-fat or a high-fat diet (20% lard oil) for 4 weeks. Two additional groups (lowfat + etoxomir and lard + etoxomir) consumed diets containing 0.01% of the carnitine palmitoyltransferase-1 inhibitor, R-etomoxir, which produced chronic blockade of enzyme activity in liver and skeletal muscle. Both the high-fat diet and drug treatment significantly impaired insulin sensitivity, as measured with the hyperinsulinemic-euglycemic clamp. Insulin-mediated glucose disposal (IMGD) fell from 12.57 +/- 0.72 in the low-fat group to 9.79 +/- 0.59, 8.96 +/- 0.38, and 7.32 +/- 0.28 micromol x min(-1) x 100 g(-1) in the low-fat + etoxomir, lard, and lard + etoxomir groups, respectively. We used HMRS, which distinguishes between fat within the myocytes and fat associated with contaminating adipocytes located in the muscle bed, to assess the IMCL content of isolated soleus muscle. A tight inverse relationship was found between IMGD and IMCL, the correlation (R = 0.96) being much stronger than that seen between IMGD and either fat mass or weight. In conclusion, either a diet rich in saturated fat or prolonged inhibition of fatty acid oxidation impairs IMGD in rats via a mechanism related to the accumulation of IMCL.
منابع مشابه
Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism.
The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in...
متن کاملCarnitine supplementation in high-fat diet-fed rats does not ameliorate lipid-induced skeletal muscle mitochondrial dysfunction in vivo.
Muscle lipid overload and the associated accumulation of lipid intermediates play an important role in the development of insulin resistance. Carnitine insufficiency is a common feature of insulin-resistant states and might lead to incomplete fatty acid oxidation and impaired export of lipid intermediates out of the mitochondria. The aim of the present study was to test the hypothesis that carn...
متن کاملInhibition of Carnitine Palmitoyltransferase-1 Activity Alleviates Insulin Resistance in Diet-Induced Obese Mice
Impaired skeletal muscle fatty acid oxidation has been suggested to contribute to insulin resistance and glucose intolerance. However, increasing muscle fatty acid oxidation may cause a reciprocal decrease in glucose oxidation, which might impair insulin sensitivity and glucose tolerance. We therefore investigated what effect inhibition of mitochondrial fatty acid uptake has on whole-body gluco...
متن کاملCarnitine Palmitoyltransferase 1b Deficient Mice Develop Severe Insulin Resistance After Prolonged High Fat Diet Feeding
BACKGROUND Carnitine palmitoyltransferase 1 (CPT1) is the rate-limiting enzyme governing the entry of long-chain acyl-CoAs into mitochondria. Treatments with CPT1 inhibitors protect against insulin resistance in short-term preclinical animal studies. We recently reported that mice with muscle isoform CPT1b deficiency demonstrated improved insulin sensitivity when fed a High Fat-Diet (HFD) for u...
متن کاملEffect of L-Carnitine on Skeletal Muscle Lipids and Oxidative Stress in Rats Fed High-Fructose Diet
There is evidence that high-fructose diet induces insulin resistance, alterations in lipid metabolism, and oxidative stress in rat tissues. The purpose of this study was to evaluate the effect of L-carnitine (CAR) on lipid accumulation and peroxidative damage in skeletal muscle of rats fed high-fructose diet. Fructose-fed animals (60 g/100 g diet) displayed decreased glucose/insulin (G/I) ratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2001